28 Introduction to the AdS/CFT Correspondence

28.1 D-branes

Strings can end on D-branes with Dirichlet boundary conditions. The in 10 dimensional type IIB string theory low-energy effective theory of N D3 branes is an $\mathcal{N}=4$ SU(N) gauge theory in 3+1 dimensions, with a gauge coupling related to the string coupling by

$$g^2 = 4\pi g_s \ . \tag{28.1}$$

The metric around this setup is

$$ds^{2} = f^{\frac{-1}{2}}(-dt^{2} + dx_{1}^{2} + dx_{2}^{2} + dx_{3}^{2}) + f^{\frac{1}{2}}(dr^{2} + r^{2}d\Omega_{5}^{2})$$
 (28.2)

$$f = 1 + \left(\frac{R}{r}\right)^4 \tag{28.3}$$

$$R^4 = 4\pi g_s \alpha'^2 N \tag{28.4}$$

where r is the distance from the branes, and α' is the inverse string tension. Taking the low-energy limit corresponds to taking $r \to 0$ with

$$U = \frac{r}{\alpha'} \tag{28.5}$$

held finite. We find

$$\frac{ds^2}{\alpha'} = \frac{U^2}{\sqrt{4\pi g_s N}} (dt^2 + dx_i^2) + \sqrt{4\pi g_s N} (\frac{dU^2}{U^2} + d\Omega_5^2)$$
 (28.6)

which is just the metric of five dimensional Anti-de Sitter Space (AdS₅) and a five sphere (S^5). Maldacena's conjecture is that Type IIB string theory on AdS₅ × S^5 should be equivalent to $\mathcal{N}=4$ SU(N) gauge theory in 3+1 dimensions. Supergravity is weakly coupled and hence a good approximation to type IIB string theory when

$$g_s \ll 1 \tag{28.7}$$

$$g_s N \gg 1 \ . \tag{28.8}$$

Perturbation theory is a good description of gauge theory when

$$g^2 \ll 1 \tag{28.9}$$

$$g^2 N \ll 1 \tag{28.10}$$

So this correspondence is hard to prove and potentially quite useful. The sphere S^5 :

$$R^2 = \sum_{i=1}^{6} Y_i^2 \tag{28.11}$$

has has a positive curvature and an SO(6) isometry which corresponds to the $SU(4)_R$ symmetry of the gauge theory. AdS₅ can be embedded in 6 dimensions

$$ds^{2} = -dX_{0}^{2} - dX_{5}^{2} + \sum_{i=1}^{4} dX_{i}^{2}$$
(28.12)

as:

$$R^{2} = X_{0}^{2} + X_{5}^{2} - (\sum_{i=1}^{4} X_{i}^{2})$$
(28.13)

is a space with a negative curvature and a negative cosmological constant. We can change to "global" coordinates:

$$X_0 = R \cosh \rho \cos \tau \tag{28.14}$$

$$X_5 = R \cosh \rho \sin \tau \tag{28.15}$$

$$X_i = R \sinh \rho \Omega_i, \ i = 1, \dots, 4 \tag{28.16}$$

$$\sum \Omega_i^2 = 1 \tag{28.17}$$

so

$$ds^{2} = R^{2}(-\cosh^{2}\rho \, d\tau^{2} + d\rho^{2} + \sinh^{2}\rho \, d\Omega^{2})$$
 (28.18)

 AdS_5 has an isometry SO(2,4) which corresponds to the conformal symmetry group in 3+1 dimensions. Another coordinate choice is Poincare coordinates:

$$X_0 = \frac{1}{2u} \left(1 + u^2 (R^2 + \vec{x}^2 - t^2) \right)$$
 (28.19)

$$X_5 = Rut (28.20)$$

$$X_i = Rux_i, i = 1, \dots, 3$$
 (28.21)

$$X_4 = \frac{1}{2u} \left(1 - u^2 (R^2 - \vec{x}^2 + t^2) \right) \tag{28.22}$$

(28.23)

$$ds^{2} = R^{2} \left(\frac{du^{2}}{u^{2}} + u^{2} \left(-dt^{2} + d\vec{x}^{2}\right)\right)$$
 (28.24)

which covers half of the space covered by the global coordinates. We can Wick rotate to a Euclidean version with

$$\tau \to \tau_E = -i\tau \tag{28.25}$$

or

$$t \to t_E = -it \tag{28.26}$$

with

$$ds_E^2 = R^2(\cosh^2 \rho d\tau_E^2 + d\rho^2 + \sinh^2 \rho d\Omega^2)$$
 (28.27)

$$= R^{2} \left(\frac{du^{2}}{u^{2}} + u^{2} \left(dt_{E}^{2} + d\vec{x}^{2}\right)\right)$$
 (28.28)

which both cover the same space. Yet another coordinate choice is

$$u = \frac{1}{z} \tag{28.29}$$

$$x_4 = t_E \tag{28.30}$$

$$ds_E^2 = \frac{R^2}{z^2} (dz^2 + \sum_{i=1}^4 dx_i^2)$$
 (28.31)

The boundary of this space is R^4 at z=0 and a point $z=\infty$. This boundary is the Wick rotation of M_4 and u=0.

The a refined version of the conjectured correspondence is

$$\langle \exp \int d^4x \phi_0(x) \mathcal{O}(x) \rangle_{\text{CFT}} = Z_{\text{string}} \left[\phi(x, z) |_{z=0} = \phi_0(x) \right]$$
 (28.32)

where we usually approximate

$$Z_{\text{string}} \approx e^{-I_{\text{sugra}}}$$
 (28.33)

and \mathcal{O} is an operator of the field theory while ϕ is a supergravity (or string) field in AdS_5 .

References

- [1] J. Maldacena, "The large-N limit of superconformal field theories and supergravity," Adv. Theor. Math. Phys. 2 (1998) 231 hep-th/9711200.
- [2] O. Aharony, S.S. Gubser, J. Maldacena, H. Ooguri and Y. Oz, "Large N field theories, string theory and gravity," hep-th/9905111.
- [3] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, "Gauge theory correlators from non-critical string theory," Phys. Lett. B428 (1998) 105 hep-th/9802109.
- [4] E. Witten, "Anti-de Sitter space and holography," Adv. Theor. Math. Phys. 2 (1998) 253 hep-th/9802150.